
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 6, DECEMBER 2004 1168

Reconfigurable Distributed Network Control System
for Industrial Plant Automation

Juan García, Francisco Rogelio Palomo, Antonio Luque, Member, IEEE, Carmen Aracil,
José M. Quero, Member, IEEE, Daniel Carrión, Francisco Gámiz, Plácido Revilla, Juan Pérez-Tinao, Manuel Moreno,

Pedro Robles, and Leopoldo G. Franquelo, Senior Member, IEEE

Abstract—Use of advanced communication technologies, highly
integrated control, and programming platforms drastically in-
creases the performance of industrial control systems. That is the
case of Motronic, where the synergistic collaboration between
industry and academia has led to an advanced distributed net-
work control system. To be commercially successful, it needs to
have a low cost and to be robust, even if this requirement implies
that it is a custom design and not based on previously existing
commercial solutions. Use of standards and off-the-shelf products
lower development costs, but usually raise production costs. In
this paper, we show that, in certain applications, design of a new
system from scratch is more advantageous. This system comprises
a set of dynamically reconfigurable local controller nodes, a
graphical programming environment, a remote supervision and
control system, and a fault-tolerant fiber optical network. TCP/IP
connectivity is provided by the use of a local gateway. Motronic is
currently being applied in the integrated control of large produc-
tion plants and in energy and power management industries.

Index Terms—Cost analysis, distributed control, internet-
working, real-time systems, supervisory control and data acquisi-
tion (SCADA) systems, token networks.

I. INTRODUCTION

THE first industrial plants automation projects, developed
in the 1970s, used electrical logic hard-wired into cab-

inets. These cabinets commanded all electrical equipment lo-
cated in the plant, and contained all logic needed to perform any
operating sequence. Cabinets were modular and composed of
local panels, each of which acquired several input signals, com-
puted hard-wired logic equations, and set its outputs. Usually,
no communication was established between panels. To realize
this logic, operators usually drew electrical schematics and later
implemented these schematics using discrete components, such
as relays and other electromechanical devices (EMDs).

It is well known that this way of working has the obvious in-
convenience of lacking flexibility. For modifying even a single
logic equation, it is necessary to rewire several parts of the fac-
tory. The need of a reconfigurable control system then arises [1]

Manuscript received August 29, 2003; revised May 31, 2004. Abstract pub-
lished on the Internet September 10, 2004.

J. García, F. R. Palomo, A. Luque, C. Aracil, J. M. Quero, F. Gamíz, P. Re-
villa, and L. G. Franquelo are with the Electronics Engineering Department,
University of Seville, E-41092 Seville, Spain (e-mail: quero@esi.us.es).

D. Carrión was with the Electronics Engineering Department, University of
Seville, E-41092 Seville, Spain. He is now with Yaco Ingenieria S.L., E-41004
Seville, Spain.

J. Pérez-Tinao, M. Moreno, and P. Robles are with Instalaciones Abengoa,
S.A., E-41007 Seville, Spain.

Digital Object Identifier 10.1109/TIE.2004.837871

and considerable effort was exerted in the 1980s to obtain such
a system.

One possible way to cope with this problem is the use of
programmable logic controllers (PLCs) and field buses. These
devices are easily reconfigurable and can be adapted to a va-
riety of situations. However, they must be programmed using
a high-level description language or a graphical description of
the algorithm [2], [3]. In this case, the physical viewpoint of
the problem, that would be easily obtained with an electrical
schematic, can be lost.

In other cases, the approach has been made to substitute hard-
wired logic by microprocessor- or microcontroller-based logic
[4]–[6], which are sensibly cheaper than PLCs, but this solution
presents the same problem stated above.

Starting from previous work [7]–[9], a completely new
system has been developed, having in mind current research
trends in plant control. This system, called Motronic, im-
plements a distributed control system with the ability to be
connected to external networks. It is capable of presenting the
user with a similar interface to the one of hard-wired logic,
but with the reconfiguration capability and low cost associated
with it being built using microcontrollers. This design philos-
ophy helps operators accustomed to working with electrical
schematics to migrate easily to microcontroller-based control.
All described approaches of automating a factory are summa-
rized in Fig. 1.

This solution’s main advantages are: 1) a completely mod-
ular system that allows quick substitution of any damaged
component; 2) important wiring and component savings in
factory automation; 3) a robust fiber-optic-based network that
provides remote communication between local controllers;
4) the possibility of having a supervisory industrial PC to
monitor current plant state; and 5) immediate connectivity to
external networks, all of this with a programming environment
containing a schematics compiler capable of translating drawn
schematics into instructions for the microcontrollers. Every part
of the system has been designed with Internet capabilities in
mind, this being one of the main requirements of today’s plant
managers, who want to be able to remotely control and monitor
their plants without having to add any new software to them.

The single most contributing point to the final user’s ability to
completely modify the system in order to suit his/her needs is the
use of the eXtensible Markup Language (XML) as an electronic
document interchange (EDI) between all software components.
This creates a flexible system that can be extended in almost any
way. Different data representations are possible thanks to

0278-0046/04$20.00 © 2004 IEEE

1169 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 6, DECEMBER 2004

Fig. 1. Different ways to build plant automation: first, hard-wired logic approach, that lacks flexibility; second, solution with PLCs, that requires knowledge of a
description language; and third, Motronic, described in this paper, combines the best of both solutions.

the use of XML, and they can be converted from one to any
other, giving the system the possibility of interacting with any
existing platform. Also, several standards in wide use for remote
procedure calling and database query allow the system to be
embedded into any other solution (for example, [10] and [11]).

Motronic is a generic control and acquisition system, able to
replace many other existing solutions in a variety of industrial
plants. It is being presently used to automate industrial facili-
ties like oil plants, paper manufacturing plants, thermal power
plants, and car production factories. The designed system is flex-
ible enough to cope with a variety of different situations. The
most used application where Motronic has been employed is
electric motors control, which is exceptionally well suited to the
kind of control Motronic is designed for. It has been proved that
the use of Motronic in this kind of environment allows a very
significant reduction in the cost of wiring maintenance.

Although it may seem obvious that previous solutions, based
on commercial hardware and software products such as PLCs
and supervisory control and data acquisition (SCADA) systems,
can be used for automation of small to medium-sized factories,
experience has proved that these solutions are not practical for
the majority of such factories. These solutions have a high aca-
demic and theoretical value, but in some industrial sectors they
are not practical enough (from an economical viewpoint) to be
widely adopted. Almost always, the main concern of an industry
management staff is to find a solution that is sufficiently cheap
to justify its purchase and at the same time is robust and guar-
antees that it can handle all plant equipment. Such a solution is
presented in the remainder of this paper.

II. SYSTEM DESIGN

An economical study carried out shows the different fixed and
variable costs associated with the use of a commercial solution
for control and actuation and the development of a solution from

scratch. A typical approach to factory automation involves the
use of PLCs networked between them and several central com-
puters for control and monitoring. This solution has low fixed
cost, but the variable cost grows rapidly due to the relatively
high price of PLCs and licenses associated with SCADA soft-
ware.

On the other hand, developing a new system has a high fixed
cost, but, if it is well designed, every unit installed in the plant
is quite cheap. The study carried out by the authors shows that
every control unit described in this paper costs less than approx-
imately half of an equivalent PLC. A simple calculation proves
that a plant that uses about 50 control units, each one with six to
eight local inputs and outputs, can benefit from using this com-
pletely developed approach. Later in this paper, the design of
these control units will be described in more detail.

Motronic is a distributed control system, composed of four
parts, as can be seen in Fig. 2: a programming environment, a
hardware platform built by a number of local controller nodes
(LCN), a supervision and control subsystem, and communica-
tions between all of them.

Architecture has been designed to replace a conventional fac-
tory automation system. There is graphical software that allows
the user to draw a plant schematic. The programming environ-
ment takes electrical schematics as inputs, and compiles them,
translating the behavior into logical equations. These equations
are internally represented as an XML tree. In a subsequent step,
the equations are translated into pseudocode that can be inter-
preted by the local controllers located in field. The programming
environment is described in Section IV.

The hardware platform is composed of local controllers nodes
(LCNs), placed in the factory plant. These controllers perform
logical calculations, based on equations downloaded at setup
time. The equations can depend on digital or analog inputs, and
set controller outputs. Inputs to the controllers can be local,

GARCÍA et al.: RECONFIGURABLE DISTRIBUTED NETWORK CONTROL SYSTEM FOR INDUSTRIAL PLANT AUTOMATION 1170

Fig. 2. Motronic system. The programming environment translates schematics
into logical equations, the hardware platform implements virtual EMDs, the
control system monitors the plant, and the communications provide links
between them.

meaning that they are physically attached to the controller, or
remote, i.e., physically attached to another controller. When a
controller needs to know a remote input value, this value is
transferred through the communication system, in a way that
is transparent to the user. Internal consistency of the system is
guaranteed by the use of a local array of variables, into which
all inputs are copied and from which all outputs are obtained.
This assures that there is no possibility of an input change in the
middle of a calculation. A practical example, with experimental
measures, of how the inputs are obtained and outputs are calcu-
lated is given in Section VI.

Computed equations in LCNs are intended to replace EMDs
and to save wiring in the plant. It can be said that controllers im-
plement virtual electromechanical devices, and the system will
act as it would be composed of these, hiding its complexity from
the user, who may be accustomed to working in a traditional
way.

LCNs are implemented by using general-purpose microcon-
trollers that interpret pseudocode downloaded to them by the
programming environment. Hardware is fully described in Sec-
tion III.

A supervisory and control system has been developed entirely
within the scope of this research project. The SCADA system
needs to be able to operate directly on the schematics and to
send and receive commands from local and remote controllers in
a way that is fully transparent to the user, giving him/her the im-
pression that he/she is commanding the plant directly. The con-
trol system, together with the programming environment and
the rest of the software development, will be described in Sec-
tion IV.

To effectively transfer remote variable values between LCNs,
an efficient communication system must be employed. The
communication system used must comply with the following
requirements: it must not depend on specific hardware, but must
run on any generic microcontroller; maximum delay time must
be upper limited; topology can be either bus or star shaped;
individual companies may modify network protocol to adapt
it to its particular environment; it must be tolerant to single or
multiple nodes failures; and it must be possible to implement it
in a fiber-optic medium.

The fiber-optic and on maximum delay time requirements are
imposed by the industrial environments in which the system will
operate. They are extremely noisy due to the switching of power
appliances that may be physically near the controllers and that
can carry currents as high as several amperes. Fiber optic has the
advantage of being immune to this electromagnetic noise and
also of being cheap enough to wire great lengths at low cost,
and it has a very broad bandwidth.

Also, sometimes operation can depend on a remote variable
transmitted over the network, so the maximum delay time must
be limited. These considerations led us [12]to implement a
token-passing protocol, based on the standard for this kind of
network.

It must be noted that the physical topology of the network is
bus or star shaped, but it acts logically as a ring. From now on,
in this paper, the network will be referred to as a token bus. The
protocol is based on the standards, but some minor modifica-
tions have been made to better suit it to industrial environments.
TCP/IP capability is also included to link a system to an open
network, or several of them together. Communications will be
described in Section V.

As will be shown in the remainder of this paper, all of the
system, including hardware and software, has been built on top
of existing architectures, widely used and heavily proved, such
as XML [13], SAX [14] and IEEE Standard 802.4 [15]. Above
these layers, the complete system has been designed with appli-
cation optimizations in mind.

A. Logical Architecture

A typical Motronic control system is composed of a number
of virtual modules. These modules usually represent traditional
EMDs used in factory automation. All of these are implemented
natively in Motronic, but the set of modules is easily expand-
able, due to the data-oriented nature of the whole system pro-
gramming (see below).

As every module is internally described in terms of its inputs,
outputs, and mathematical operations, new modules can be built
by the user, in run time, without need of recompilation, or even
restart of the system. These modules can be formed by arranging
together two or more existing modules, or by designing com-
pletely new ones.

When a user draws an electrical schematic, Motronic SCADA
creates an XML netlist document (called XGraph) and passes
it to the Motronic compiler, which in turn filters it to an XML
equation description document called XLogic. From this doc-
ument, several applications are obtained. First, the controllers
pseudocode is generated to set up the LCNs. Then, a control
system is configured in the PC to monitor the system. This con-
trol system uses an associative map between field variables and
their graphical representations.

At system power-on, the compiled equations are downloaded
from the PC to each LCN, and they store them in nonvolatile
memory, making the system immune to power faults. From this
moment on, the PC is not necessary, and the LCNs can work on
their own. Nevertheless, the PC can be very useful for online
monitoring and control of the plant.

1171 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 6, DECEMBER 2004

Fig. 3. General system architecture, showing cabinets and LCNs: (1) plant equipment; (2) LCN; (3) fiber-optic network; (4) system setup by a PC; (5) data
acquisition; (6) remote access to the plant; (7) input signal; (8) online supervision and control.

The SCADA subsystem is used to perform a real-time moni-
toring of plant operation. Every change in a module can be dis-
played on a user’s monitor and, of course, the user can remotely
operate the modules.

B. Physical Architecture

The physical system architecture that Motronic is based on
can be seen in Fig. 3. This system is composed of a number of
LCNs, each one with several digital and analog inputs and out-
puts, and an intelligent software embedded in a microcontroller
that makes all the necessary calculations and takes care of net-
working communication between LCNs. LCNs are physically
arranged to form cabinets, typically used in traditional facto-
ries.

In Fig. 3, it can be seen that each LCN acquires digital inputs
such as STOP button (7), performs logic calculations, and sets
outputs, for example, turning plant equipment on and off (1).
In the figure, inside of each LCN, Main (MC) and Node (NC)
cards (explained below) are shown.

Sometimes, logical equations can refer to plant operating
variables (for example, temperature, voltage, and current in a
motor). These analog variables can be measured by the same
or another LCN (5). Provision for calculating mean, rms, max-
imum, and minimum of each analog variable is implemented
internally in the controllers.

Logical equations stored inside an LCN can reference local
or remote variables without distinction. Communication of data
between LCNs takes place over the fiber-optic network that con-
nects each cabinet (3).

In place of an LCN, it is possible to attach a control PC that
remotely configures each local controller node before turning

the plant on (4), and monitors correct functioning while the plant
is working (8). The system works transparently over a network
by natively understanding the TCP/IP protocol (6). This way,
each component can be operated remotely without the need to
be physically near the cabinets. Several possible configurations
will be discussed in Section V.

All LCNs are identical, and they are distinguished from one
another only by the position they hold in the cabinet. Each LCN
knows its position thanks to the Node Card (see below), which
sends a position number every time the LCN is powered up. This
way, if an LCN must be removed for maintenance, it is safe to
replace it in the same location, because the LCN will remember
its last location and will continue operating normally. Also, any
LCN can be substituted by any other in case of error or damage.
If a new LCN is inserted in an empty place, it will ask the PC
for its equations before starting its operation.

III. HARDWARE PLATFORM

A. Design Specifications

Hardware design was realized with three objectives in mind.
The most important one is reliability. All elements and mod-
ules can be safely removed or replaced. System intelligence
is distributed along all microcontrollers. An example of this is
the continuous monitoring that each LCN makes of any remote
input. If a remote LCN fails, local outputs are disabled for se-
curity.

Another target is extensibility. This application has been de-
signed to be used in many different industrial environments, so
the system must be extensible in order to be adaptable to any par-
ticular case. Finally, it is fundamental to build a low-cost system.
We have designed the microcontroller cards in order to remove

GARCÍA et al.: RECONFIGURABLE DISTRIBUTED NETWORK CONTROL SYSTEM FOR INDUSTRIAL PLANT AUTOMATION 1172

Fig. 4. Main Card. The card has a number of connectors for digital and analog
inputs and outputs, and one port to connect it to Node Card through IrDA or
fiber optic.

most of the electric wires in each LCN, reducing cost and sim-
plifying the system.

The hardware platform has been divided into communication
and controller modules. The completed design is made up of
three cards, two of them (Node Card, T Card) supporting com-
munications, and one, the Main Card, controlling the LCN.

As stated in Section II, the system is composed of a number
of LCNs. Each LCN contains at least two microcontroller cards
(MC and NC) designed within the scope of the research, as well
as other standard components, such as power supplies, contac-
tors, electrical protections, etc. The Main Card is movable and
the Node Card is fixed in the cabinet.

B. Main Card

The Main Card acquires digital and analog input signals
from electromechanical devices and stores them in its internal
memory. On the other side, this card commands these electro-
mechanical devices using digital and analog outputs. The
relation between card inputs and outputs is established by a set
of internal equations, as discussed in previous sections.

Analog input signals are current signals of 0–6 A, 4–20 mA,
and voltage signals of 130 V. Output digital signals can be to
LEDs and to relays. Digital inputs are optically coupled to pro-
tect the microcontroller. The Main Card supports a number of
inputs and outputs designed to be sufficient in most applications.
In certain cases, a larger number of inputs and outputs can be ob-
tained using up to two more Main Cards in each LCN.

This card contains a fiber-optic connector and an IrDA
transceiver to communicate with the system. Both can be used
without distinction to set up communications between this card
and the rest of the system. The two options present the advan-
tage of being immune to electromagnetic noise, something that
is almost always present in industrial environments.

The baud rate of the network can be increased by minor
changes to the hardware. Presently, the network operates at 1
Mb/s.

Fig. 4 is a photograph of the Main Card. A widely known
microcontroller manufactured by Motorola, Inc. is used.

C. Network Cards

The Node Card is an interface between the fiber-optic
network and the Main Card. This Node Card is in charge of
adapting the physical format of the message from the Main
Card to the fiber-optic link or IrDA link communication and
improving the mechanical flexibility of this connection.

This card contains a microcontroller, IrDA, and fiber-optic
transceivers to set a communication link with the Main Card,
an RS-232 transceiver for connecting the PC that configures
the system, and two fiber-optic transceivers to connect with the
system fiber-optic bus.

The main way to set a communication between the Main and
Node Cards is by using the IrDA transceiver. By doing so, they
can be separated, and communication remains active, thanks to
the wireless IrDA channel. The distance between these cards
can be up to 1 m. This is convenient for maintenance, because
if a Main Card has a partial failure, an operator can extract it to
find the error without losing the communication between cards.
The fiber-optic transceiver allows the connection between both
cards in case of no possible IrDA communication, for example,
in an extremely dusty environment.

Another important function of the Node Card is to identify the
different LCNs. To identify each card, an identification number
must be assigned. Each card is connected to certain elements
of the plant, so the identification number is fundamental for
the right configuration of the system. Identification could be as-
signed to the Main Card, but it could be placed in a wrong lo-
cation of the cabinet, so the system would be misconfigured.
Therefore, identification is physically associated with the Node
Card location. When an LCN is placed, the Main Card asks for
the value of the identification number to the Node Card, con-
nects to the fiber-optic communication link, and computes the
logical equations to calculate the outputs from the inputs.

On top of every cabinet, a T Card is located, allowing data
to flow between cabinets, and assuring that it is possible for
each LCN to communicate with all others, even if they are in
different cabinets. It allows adding new cabinets by expanding
the fiber-optic communication link. This card include fiber-optic
connectors and logical gates.

IV. SOFTWARE PLATFORM

A. General Software Architecture

The software architecture has to fulfill two main require-
ments: it has to define logic modules to substitute EMDs and
to maintain the remote interaction between the user and the
plant by means of drawings of the plant wired logic schematics.
The virtual logic modules are running on LCNs, remotely
programmed from a PC. The entry data for programming can
be textual (we have defined a logical equations language named
LoGiC) or graphical (using the same drawing schematics that
define the visual interface).

Motronic software is composed of three different parts: a
SCADA system, a compiler–interpreter pair, and communica-
tions stations. The SCADA system, PC resident, allows the user
to draw schematics, to manage icon libraries, and presents the
graphical user interface with the rest of the system. The com-
piler is located in the PC and generates, from the schematics,

1173 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 6, DECEMBER 2004

the pseudocode that is later sent to the interpreter residing in
the LCNs. Finally, the communications stations are in charge of
managing the message passing between nodes in the network
(in the case of the LCNs and PC) and between the network pro-
tocols that are supported (only in the PC).

For the planning of the architecture we utilize four design
philosophies: object-oriented programming (OOP) for the
SCADA, data-oriented programming (DOP) for the SCADA
builder and for the virtual module compiler, real-time program-
ming (RTP) for the whole communications procedure (on IP
and on token bus, with gatewaying between the protocols),
and data-flow-oriented programming (DFOP) for the software
running on the LCNs.

Use of the DOP philosophy in industrial software is a re-
cent innovation. The necessity of including a compiler to trans-
form the LoGiC program or the drawn electrical schematics
into pseudocode recommended the definition of a virtual doc-
ument pipeline processing, so the DOP philosophy was the log-
ical choice. The DOP paradigm is also used in several other parts
of the system.

The DOP data format is XML. The W3 Consortium has nor-
malized XML as a data description language [13]. The XML
documents are sequential ASCII files in human-readable format.
This feature, and its inherent hierarchical structure make it ideal
for data storage and recovery in a way that is easily modifiable
without having to recompile anything. This is one of the most
interesting advantages of the system described here, and it al-
lows one to develop the software platform and future additions
to it with little effort.

Each XML document has to be processed (a task usually
known as parsing) to incorporate the data contents into a client
application. For XML processing we use the event-driven ap-
proach using an event-driven parser, based on SAX [14], called
expat [16]. An event-driven parser helps the application to be
very fast and economical in memory resources.

XML as a data format is intensively used by the Motronic
application as text, as a serialization of other data structures,
and as a logical tree. Several dialects of XML are used in
Motronic: XIconLib, XGraph, and XLogic, and there is a di-
alect transformation from XGraph to XLogic in the compiling
pipeline. XIconLib is used for external description of objects
and system configuration, XGraph describes schematics and
synoptics drawings and XLogic describes logical equations in
postfix notation. Serialization of these dialects is also carried
out by the software to store the data in computer files.

The inverse process, object reconstruction, is made through
factory classes [17], [18]. The pattern of the objective class is
embedded into its respective factory class. From the entry data,
in XML format (for example, XIconLib), the factory class re-
constructs the objective class using the pattern as a template.
Object reconstruction is useful to increase application function-
alities by adding new objects (of known patterns embedded in
application factory classes) through their data description.

The programmer can add new patterned objects to the
Motronic object library by writing documents in the XIconLib
dialect. This is a modular mechanism to increase Motronic
functionalities without recompiling the whole application. At
the start of the Motronic application, an initialization sequence

Fig. 5. SCADA action flow. Different ways to generate graphical interfaces
are shown. Also, the two main communication channel are presented.

makes an object construction through the factory classes mech-
anism.

B. Control and Monitoring (SCADA)

The SCADA functionality manages three tasks: to show the
plant events interactive drawings, to react to user events, and to
transfer messages between the plant and the user. The interactive
drawings are electrical schematics for the virtual logic modules
(implemented by the LCNs) and plant structure synoptics. This
SCADA action flow is shown in Fig. 5

The SCADA functionality, built using the OOP model in C++
language, has been designed following the Model View Con-
troller (MVC) paradigm. The MVC paradigm proposes three
principal sets of objects in the software: a Model (underlying
logic structure of data), a View port (user interface), and a Con-
troller (connection between View and Model).

Active icons are virtual representations of the wired logical
elements, used for displaying the dynamical state of the plant
and for providing a user–plant interface. They are designed as
tiny automatons that evolve in response to incoming messages
and generate outgoing responses.

The Motronic SCADA View port is a typical control GUI,
similar to the programming environment (see below), following
the same conventions as other CAD or SCADA interfaces. A
screenshot of this GUI can be seen in Fig. 9.

A SCADA builder is included in the software, so that the user
is not tied to any particular representation of the plant. It is in
this builder that the user draws plant schematics. Having in mind
the nature of most distributed control systems, the software has
been designed in a way so that the user can draw schematic
modules that can be reused and, thus, define a modular library
of plant schematics that can be incorporated into a hierarchical
plant representation.

GARCÍA et al.: RECONFIGURABLE DISTRIBUTED NETWORK CONTROL SYSTEM FOR INDUSTRIAL PLANT AUTOMATION 1174

Fig. 6. Compiler pipeline. Inputs to the compiler can be electrical schematics,
or textual description of the logic. These inputs are translated into XLogic, and
from that into pseudocode downloadable to LCNs.

The set of objects (active icons) that the SCADA system
incorporates is easily expandable by the use of the SCADA
builder, which allows the user to add new objects to the icon
library, using the XIconLib XML dialect.

C. Programming Environment

The programming environment comprises a compiler suite,
the mission of which is the translation of electrical schematics
(graphical programming) or high-level logic language (textual
programming) into pseudocode [19].

The data flow of a compiler is very linear, starting from the
source program, generating intermediate documents, and con-
cluding in the object program. The compiler data flow is de-
scribed as a pipeline for documents building. In Motronic, the
compiling pipeline has a “Y” structure, as can be seen in Fig. 6.

The compiler final target, the pseudocode, codifies logical
equations and EMDs. The pseudocode instruction set describes
operations on a stack because any logical equations set can be
written in postfix notation.

Starting from the electrical schematic, a XGraph document is
generated. In a second stage the XGraph is parsed, building in
memory the logical graphs that represent the wired logic. These
graphs are processed with a reduction algorithm, using serial-
parallel transformations and other reduction schemes until the
coded equations have been extracted. The sets of equations, as
postfix trees, are written in XLogic format. These equations are
carefully generated by the compiler, in order to minimize the
number of variables that must be sent between several LCNs,
and so as to save network bandwidth.

D. Microcontrollers Software

The software running on local microcontrollers has to ac-
complish four different tasks: to implement the virtual electro-
mechanical devices, to communicate properly with the rest of
the nodes in the network, to sample analog inputs at a vari-
able (user specified) rate, and to allow its own expansion (as
described in Section III-B).

The implementation of virtual modules is made by the cal-
culation of the logical equations downloaded from the PC at

the beginning of operation that are mathematically equivalent
to electromechanical devices behavior.

Network communication is guaranteed by a software imple-
mentation of the link layer of the token-bus algorithm. Com-
munications will be described in Section V. The design of the
application protocol has been oriented to achieve a high level of
security in the process of sending remote variables through the
network, in order to minimize the chance of losing synchronism
between LCNs themselves and between LCNs and PC.

The sample of analog inputs and hold of analog outputs is
made in parallel with the rest of the program, calculating at the
same time the mean, rms, maximum, and minimum values of
every input. Some inputs are voltages and some others are cur-
rent, and the instantaneous power is continuously calculated by
the microcontrollers. These values are displayed in the moni-
toring system running on the PC. This way, the LCNs can act as
voltmeters, ammeters, and wattmeters.

Finally, each LCN can be expanded by adding more cards
to it. Additional cards provide more memory and, more impor-
tantly, a greater number of inputs and outputs to the LCN. Soft-
ware running on microcontrollers makes addition of these cards
transparent to the user and the control PC.

These four tasks are performed by microcontrollers in parallel.
A real-time architecture had to be developed to accomplish this,
something quite difficult, given the limited resources present
in the LCN. None of them has any external memory, in order
to reduce costs, something that is fundamental for industry
acceptance.

V. COMMUNICATIONS

A. Token-Bus Optical Network

To properly configure and monitor the system, data must
be exchanged between control PC and LCNs. Moreover, there
are cross-referenced equations requiring two or more LCNs
working in coordination. The time it takes to deliver such
information is upper bounded by using a network protocol
derived from the IEEE 802.4 Token Bus Specification [15].
Among the advantages of token bus networks are its excellent
throughput performance and its capability to regulate the ac-
cess to the medium [20]. Other protocol alternatives, such as
CAN, Profibus, and Industrial Ethernet do not suffer from the
inconveniences of token bus, namely, its complex algorithm,
large overhead, and delay in the incorporation of new stations
to the ring. These inconveniences can be reduced significantly
by simplifying the protocol, as explained below. Having all
these considerations in mind, finally, token bus was chosen as
the network protocol for the system for its feature of having the
transmission delay upper bounded.

Althoughbasicconcepts,algorithms,andfinite-statemachines
described in thespecificationare fullyaccomplished, someminor
functionality has been modified in order to suit system require-
ments. An example of this is the addition of an alarm frame, in-
tended to allow LCNs to transmit an urgent signal without them
waiting to acquire the token, to make sure that emergency situa-
tions are quickly handled. Another example of variation from the
standard is the simplification of data frame formats to maximize

1175 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 6, DECEMBER 2004

Fig. 7. Client/server setup for remotely controlling the plant over a TCP/IP network.

bandwidthsavingsinthisapplication.Theresultingcodehasbeen
kept as simple and robust as possible, considering the limited re-
sources of the MCORE microcontroller and the adverse condi-
tions found in industrial environments.

Consequently, all nodes (LCNs or PC) are arranged in a log-
ical ring fashion, where a token runs from node to node, allowing
only one node to transmit data at a time, thus ensuring there is a
bound on the time it takes to deliver a packet between any two of
them. The network protocol is also designed to allow a short reac-
tion time after a critical failure occurs in any of the nodes. This is
accomplished by forcing each node to broadcast a call for alarms
as soon as the token is received. Alarms are sent through the net-
workwithahighpriority,somethingthat isvital insomeindustries
in which the time loss involved in communicating with a remote
LCN can be critical. The configuration of alarm and priority sig-
nals is made at the beginning of operation, together with logical
equations downloaded to each LCN. Should an LCN or fiber con-
nection fall down, the system would create separate subnetworks
and when the failure is cleared both subsystems will join together
and continue working. Only one of these subnetworks canbe con-
nected to the local PC, but all of them can work locally.

The token-bus network only covers the link layer of the OSI
protocol model. On top of it, an application layer has been de-
signed that allows LCNs to communicate between them and
with any external device. This application protocol is based on
commands and acknowledgments. Each message is encapsu-
lated in a token-bus packet, which includes a checksum to en-
sure message integrity. The link layer has the mission of deliv-
ering the message to its final destination, or returning an error
message to the sender. Having an application layer on top of the
link layer, it is possible (and has been realized, as will be shown
in Section V-B) to send application messages over other kinds
of networks, such as TCP/IP.

B. Internetworking

In addition to the token-passing network linking LCNs be-
tween them and with the PC, TCP/IP capability has been added

to the system. The PC can act as a gateway between the indus-
trial network and the outside Internet. This way, it is possible to
remotely control the whole system from any computer or device
connected to the Internet. The piece of software that is acting as
a gateway on the PC runs in a separate thread from the control
system. This way, communications cannot disturb normal func-
tioning of the control part.

Internetworking also gives the system the capability of being
operated using two or more remote PCs. The SCADA software
running on PCs can behave as a client or as a server, in network
terminology. When the PC physically attached to the fiber-optic
bus is acting as a server, it will respond to commands coming
from other PCs acting as clients. There can be a number of
clients monitoring the plant state all over the world. Further-
more, these clients can send orders and the server PC will trans-
late them into LCN commands, allowing true and effective re-
mote control. Collisions are avoided by server software.

This last configuration, completely generic, is shown in
Fig. 7. Among the possible configurations, there is the pos-
sibility of having any one of the TCP/IP links shown being
wireless. For example, it is possible to have an isolated plant in
a hardly accessible place. It is easy to remotely control it using
a General Packet Radio Service (GPRS) link between the local
Motronic server and the Internet. Moreover, it is also possible
to control it from a hand-held device such as a mobile phone,
provided it can be programmed to act as a Motronic client.

Another possible connection is presented in Fig. 8. In this
figure, two factories belonging to the same company, and both
managed by Motronic, are joined together through an external
public network (for example, the Internet). The PCs on both
sides of the Internet link act as gateways between the token-bus
network and TCP/IP, in a way that is totally transparent to
control LCNs. Of course, this solution can be extended to any
number of plants. This way, it is possible to have a logical
equation stored in an LCN to depend on a digital input located
in another factory, and communication of the present state of
that input is carried by the external network. This approach

GARCÍA et al.: RECONFIGURABLE DISTRIBUTED NETWORK CONTROL SYSTEM FOR INDUSTRIAL PLANT AUTOMATION 1176

Fig. 8. Interconnection of two plants through the public Internet by using local PCs acting as gateways between local fiber-optic network and TCP/IP network.

can imply a significant savings in wiring for a company, which
can effectively join all its plants using a public network. Addi-
tionally, talking between operators is also implemented in the
application. The possibility of attacking the plants from the In-
ternet is practically ruled out by the use of cryptography be-
tween the ends. All communication going through the public
network is encrypted using well-known algorithms, creating a
virtual private network (VPN) between the different locations
[21]. As was mentioned earlier, use of XML throughout all of
the applications makes it very easy to use HTTP for remote doc-
ument and code interchange.

VI. INDUSTRIAL APPLICATIONS AND EXAMPLES OF USE

The original application for which the system was initially
intended was the motor control cabinets [22] that are widely in-
stalled in all kinds of industrial plants. These cabinets are used
to command all motors in a factory. Inputs for them are both dig-
ital and analog, for example, push buttons and current through
motor rotors. Outputs are used to control motor states and to act
over the whole system.

In a typical case, a control cabinet is used by an operator
to control several similar motors. When the operator presses a
“start” button, the motors are turned on. They can be turned off
by the operator, or if security thresholds are reached in any of the
operating variables that could cause damage. Normally, control
logic is more elaborate, and it includes timers, counters, and
several other devices that make plant operation semi-automatic.

To highlight some figures, we can mention the oil extrac-
tion industry, which makes intensive use of electric motors. In
this kind of plant, dozens of motors are connected to each cab-
inet. For each motor, a number of operating variables need to
be monitored (winding temperature, rotor current, state of pro-
tections, etc.), giving an overall of about 10 000 signals in the
whole plant. To monitor all of these would imply a complicated
system of numerous electrical connections. The way that this
problem is solved in our system is by using a fiber-optic bus,
drastically decreasing the cost and the complexity. In addition,

the system is not only monitored but also controlled. Actions
over the system are carried out with a graphical environment.

To give an example of application, a motor control cabinet
usually implements a star–triangle start of large motors. This
particular logic is easily accomplished in Motronic, making its
setup and maintenance extremely easy.

The process begins by drawing the electrical schematic in
a PC with the help of a complete palette of electromechanical
devices. This schematic can be seen in Fig. 9. When the drawing
is complete, a compiled form of it is downloaded to the LCN that
will implement it. In the schematic of Fig. 9, real and virtual
objects are represented. For example, pushbuttons shown at the
top right do exist physically, while the switches surrounded by
circles do not; they have the only function being activated by the
operator on a PC. It is important to note that virtual devices and
buttons can (and effectively do) affect the system’s logic.

Other elements that appear in this screenshot are: timers, in
the bottom-left corner, to commute between star and triangle
connection; a flip-flop at the bottom right, to store the on–off
state of the system; indicator lights, in the middle, that mimic
the behavior of those installed in the field; a voltmeter, at the
top right, that is connected to the mains supply; contactors, etc.
Of these devices, timers, voltmeters, and flip-flops do not cor-
respond to any real component, but are produced internally by
Motronic.

The real system that implements this configuration is shown
in Fig. 10. Components that manage power can be clearly seen.
Only those devices really exist. The rest of the devices exist only
inside the Main Card (which is located at the top-right corner of
the image). There is no need to use discrete timers, voltmeters,
or flip-flops, thus, considerable amount of space is saved.

With this system installed in the plant, a number of tests were
made, measuring response times and verifying that consistency
between all variables is always handled correctly. Delay mea-
sured between change of an input and activation of the corre-
sponding output is shown in Fig. 11(a). This delay is about 500

s, and it includes the time of acquiring the input, performing
equation calculations, and setting the output that activates the

1177 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 6, DECEMBER 2004

Fig. 9. Electrical schematic of a star-triangle motor starter. Active elements, such as switches and pushbuttons, are shown. Real components, like magnetic or
thermal protections, are also shown, as are the virtual components that are implemented by software in LCNs, for example, timers and voltmeters. Logic is also
implemented by LCNs.

Fig. 10. Top view of the LCN that implements a star-triangle motor start. At
top-right corner, the Main Card can be seen. The rest of the devices are relays
and protections that are used to turn motors on and off. All of these devices are
monitored by the microcontroller and can be actuated from local or remote PC.

motor. The graph displayed in this figure is obtained when the
input is local in the LCN. If this input is to be obtained through

the network from a remote LCN, then delay is somewhat higher,
about 20 ms in the measured case [Fig. 11(b)].

When the electrical schematic is downloaded to the Main
Card, the interface in the PC changes from an editable schematic
to a control and monitoring system. In this interface, all elec-
trical (analog and digital) variables can be monitored, knowing
all system states at every moment. There also are active elements
that can be actuated from the PC, for example, to remotely start
or stop motors. As can be seen in the schematic, those active ele-
ments (marked with circles) are interspersed in the logic circuit,
thus, there is no difference for a motor being activated locally
in the field, remotely in the plant SCADA, or even from any PC
on the globe connected to the plant through the Internet.

VII. CONCLUSION

A distributed industrial system with network capability has
been presented. This system provides a reliable, flexible way to
control an industrial plant, with sensible advantages over other
solutions, such as PLCs. Motronic is an open and modular plat-
form, completely microcontroller based and made up of a re-
duced set of hardware and software elements, which can be

GARCÍA et al.: RECONFIGURABLE DISTRIBUTED NETWORK CONTROL SYSTEM FOR INDUSTRIAL PLANT AUTOMATION 1178

Fig. 11. Experimental delay between input change and output activation. (a) When both signals are local to the LCN. (b) When the activation signal is located in
another LCN and transmitted through the network.

easily adapted to meet any given requirements at a reasonable
cost.

Motronic is composed of four parts, tightly integrated with
one another. Local control nodes provide access to plant equip-
ment, the programming environment gives the user the capa-
bility to build plant automation from electrical schematics, the
SCADA system allows real-time control and monitoring, and
communications provide the necessary integration between the
parts, and also the external network connectivity.

In a typical application, such as substituting hard-wired logic,
LCNs compute their own equations without the need of any cen-
tral node for functioning. Furthermore, LCNs can be aware of
the current state of other LCNs, and act based upon that infor-
mation as well. This provides an extremely powerful environ-
ment to design the actual operation scheme of the plant, which
is much more flexible than those designed using traditional ap-
proaches such as hard-wired logic or PLCs.

The internal communication lies upon a token-bus network
running over a mixed fiber-optic and IrDA medium which en-
sures flexibility and electric noise immunity.

A PC can be connected at any point of the network, to re-
motely monitor and control the plant. The Motronic application
running on the PC has been designed with a data orientation,
which makes this software easily reconfigurable and completely
modular. The data layer has been built on top of a proved, in-
dustry-chosen standard, such as XML.

The PC also implements a graphic compiler, designed to
translate electrical schematics into pseudocode downloadable
to microcontrollers. This approach is extremely powerful,
because it allows new devices to be easily connected to the
network.

Reliability is guaranteed by a thorough hardware and soft-
ware design, with a no-single-point-of-failure strategy. Also,
methods to react rapidly to certain events, local or remote, are
provided, so that operators can safely do their work.

As all protocols are based on standards, the system can be
extended in the future to encompass virtually any device.

The system is presently in use in several factories, where it has
proved its validity as a truly distributed and network-oriented
control system.

The solution presented here is adequate for most factories that
want a cheap and robust system and are not concerned about
generic and standards-compliant solutions that are not practical
enough to be successfully used in real environments. Industrial
partners in the development of this system have experience in
developing control and actuation systems, and their success in
putting them in the market for more than 20 years backs the
claims presented in this paper.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for all their
valuable suggestions and comments on this paper.

REFERENCES

[1] A. Speck, “Reusable industrial control systems,” IEEE Trans. Ind. Elec-
tron., vol. 50, pp. 412–418, June 2003.

[2] G. Frey and L. Litz, “Formal methods in PLC programming,” in
Proc. IEEE Conf. Systems, Man and Cybernetics (SMC), 2000, pp.
2431–2436.

[3] Programmable Logic Controllers, Part 3: Languages, International
Standard 61131, 1993.

[4] N. Raghunandan, S. Sumithra, R. Anasuya, T. S. Natarajan, and G. Ran-
garajan, “Automatic control of Stirling cycle liquid nitrogen plant,” in
Conf. Rec. IEEE-IAS Annu. Meeting, vol. 2, 1992, pp. 1721–1723.

[5] J. P. Agrawal, E. Bouktache, O. Farook, and C. R. Sekhar, “Hardware
software system design of a generic embedded controller for industrial
applications,” in Conf. Rec. IEEE-IAS Annu. Meeting, vol. 3, 1995, pp.
1887–1892.

[6] A. G. Malamos, K. Kalaitzakis, and N. C. Voulgaris, “A microcontroller-
based system for monitoring and controlling the operation of an uninter-
ruptible power supply,” in Proc. IEEE Int. Symp. Industrial Electronics
(ISIE’95), vol. 2, 1995, pp. 610–615.

[7] J. García, J. M. Quero, R. Palomo, F. Manzanares, L. G. Franquelo,
and J. Brey, “Distributed microprocessor controllers using optical fiber
network,” in Proc. XV Conf. Design of Circuits and Integrated Systems
(DCIS), 2000, pp. 557–560.

[8] J. M. Quero, R. Millán, M. Haidenthales, S. Fenoy, L. G. Franquelo,
and R. Osuna, “Microprocessor board for industrial control of electric
motors,” in Proc. XIII Conf. Design of Circuits and Integrated Systems
(DCIS), 1998, pp. 352–355.

[9] J. García, A. Luque, C. Aracil, F. R. Palomo, D. Carrión, F. Gámiz, P. Re-
villa, and J. M. Quero, “Motronic: A configurable electronic controller
for industrial power plants,” in Proc. XVIII Conf. Design of Circuits and
Integrated Systems (DCIS), 2003, pp. 673–676.

[10] M. Gudgin, M. Hardley, J.-J. Moreau, and H. F. Nielsen. (2003,
June) “Simple Object Access Protocol (SOAP),” World Wide Web
Consortium (W3C),” W3C Recommendation. [Online]. Available:
http://www.w3.org/TR/soap

1179 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 6, DECEMBER 2004

[11] J. Robie, J. Lapp, and D. Schach. (1998, Sept.) “XML Query Language
(XQL),” World Wide Web Consortium (W3C),” W3C Recommendation.
[Online]. Available: http://www.w3.org/TR/soap

[12] F.-L. Lian, J. R. Moyne, and D. M. Tilbury, “Performance evaluation of
control networks: Ethernet, ControlNet, and DeviceNet,” IEEE Contr.
Syst. Mag., vol. 21, pp. 66–83, Feb. 2001.

[13] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. (2000,
Oct.) “Extensible Markup Language (XML) 1.0,” World Wide Web
Consortium (W3C),” W3C Recommendation. [Online]. Available:
http://www.w3.org/TR/REC-xml

[14] D. Brownell. (2003) SAX, Simple API for XML. [Online]. Available:
http://sax.sourceforge.net

[15] Information Processing Systems—Local Area Networks—Part 4: Token-
Passing Bus Access Method and Physical Layer Specifications, ISO/IEC
Std 8802-4; ANSI/IEEE Std 802.4, 1990.

[16] J. Clark. (2003) Expat: XML Parser Toolkit. [Online]. Available:
http://www.jclark.com/xml/expat.html

[17] F. Arciniegas, C++ XML. Indianapolis, IN: New Riders, 2001.
[18] A. Alexandrescu, Modern C++ Design: Generic Programming and De-

sign Patterns Applied. Reading, MA: Addison-Wesley, 2001.
[19] J.-P. Tremblay, The Theory and Practice of Compiler Writing. New

York: McGraw-Hill, 1985.
[20] W. Stallings, Data and Computer Communications. Upper Saddle

River, NJ: Prentice-Hall, 2004.
[21] W. A. Arbaugh, J. R. Davin, D. J. Farber, and J. M. Smith, “Security

for virtual private intranets,” IEEE Computer, vol. 31, pp. 48–55, Sept.
1998.

[22] Recommended Practice for Electric Power Distribution for Industrial
Plants, IEEE Std 141-1993, 1994.

Juan García was born in Seville, Spain, in 1965. He
received the M.Sc. degree in electrical engineering
and the Ph.D. degree from the University of Seville,
Seville, Spain, in 1992 and 1995, respectively.

Since 1998, he has been with the Electronics En-
gineering Department, University of Seville. His re-
search is currently focused on microelectromechan-
ical systems, biosensors, and position sensors.

Francisco Rogelio Palomo was born in Seville,
Spain, in 1969. He received the M.Sc. degree in
fundamental physics in 1992 from the University of
Seville, Seville, Spain, where he is currently working
toward the Ph.D. degree in the field of stochastic
resonance.

In 1999, he joined the Electronics Engineering De-
partment, University of Seville, where he currently is
a Research and Teaching Assistant. His research in-
terests include signal processing, distributed control,
and embedded systems.

Antonio Luque (M’04) was born in Seville, Spain,
in 1976. He received the M.Sc. degree in electrical
engineering in 2000 from the University of Seville,
Seville, Spain, where he is currently working toward
the Ph.D. degree in the field of MEMS.

From 2000 to 2002, he was granted with a re-
search fellowship from the Andalusian Government.
In 2002, he joined the Electronics Engineering
Department, University of Seville, where he cur-
rently is a Research and Teaching Assistant. His
research interests include microfluidics, BioMEMS,

distributed control, and embedded systems.

Carmen Aracil was born in Seville, Spain, in 1974.
She received the M.Sc. degree in physics in 2001 and
the M.Sc. degree in electronics engineering in 2003
from the University of Seville, Seville, Spain, where
she is currently working toward the Ph.D. degree in
the field of BioMEMS.

In 2002, she was a Research Assistant at the Uni-
versity of Seville. In 2003, she joined the Electronics
Engineering Department, where she currently is
a Research and Teaching Assistant. Her research
interests include bioengineering, microfluidics, and

control systems.

José M. Quero (M’97) was born in Seville, Spain, in
1963. He received the M.Sc. degree in electrical en-
gineering and the Ph.D. degree from the University
of Seville, Seville, Spain, in 1988 and 1990, respec-
tively.

He is currently a full-time Professor in the
Electronics Engineering Department, University of
Seville. His research interests include microelec-
tromechanical systems and industrial applications.

Daniel Carrión was born in Seville, Spain, in 1978.
He received the M.Sc. degree in telecommunications
engineering from the University of Seville, Seville,
Spain, in 2003.

He is currently a Project Engineer with Yaco In-
genieria S.L., Seville, Spain. His research interests
include communication networks and protocols, dis-
tributed control, and embedded and real-time systems

Francisco Gámiz was born in Seville, Spain, in
1971. He is currently working toward the M.Sc.
degree in telecommunications engineering at the
University of Seville, Seville, Spain.

A long-time Web designer and freelance pro-
grammer, his research interests include data-oriented
programming, distributed applications, and elec-
tronic music.

Plácido Revilla was born in Cádiz, Spain, in 1978.
He is currently working toward the M.Sc. degree in
telecommunications engineering at the University of
Seville, Seville, Spain.

He spends his spare time writing computer
program. His research interests include signal pro-
cessing, embedded systems, and hardware/software
development.

Juan Pérez-Tinao is a Design and Project Engineer with Instalaciones
Abengoa, S.A. (Inabensa), Seville, Spain, a leading company in factory
automation, plant control, electrical installations, and solar energy.

GARCÍA et al.: RECONFIGURABLE DISTRIBUTED NETWORK CONTROL SYSTEM FOR INDUSTRIAL PLANT AUTOMATION 1180

Manuel Moreno is a Design and Project Engineer with Instalaciones Abengoa,
S.A. (Inabensa), Seville, Spain, a leading company in factory automation, plant
control, electrical installations, and solar energy.

Pedro Robles is the Logistics and Operations Director of Instalaciones
Abengoa, S.A. (Inabensa), Seville, Spain, a leading company in factory
automation, plant control, electrical installations, and solar energy.

Leopoldo G. Franquelo (M’85–SM’96) was born in
Málaga, Spain. He received the Ing. Ind. and Doctor
Ingeniero Industrial (Ph.D.) degrees from the Univer-
sity of Seville, Seville, Spain.

He is currently a full-time Professor in the
Electronics Engineering Department, University of
Seville. His current research interests are intelligent
control of industrial drives and VLSI circuits for
industrial control.

	toc
	Reconfigurable Distributed Network Control System for Industrial
	Juan García, Francisco Rogelio Palomo, Antonio Luque, Member, IE
	I. I NTRODUCTION
	Fig.€1. Different ways to build plant automation: first, hard-wi

	II. S YSTEM D ESIGN

	Fig.€2. Motronic system. The programming environment translates
	A. Logical Architecture

	Fig.€3. General system architecture, showing cabinets and LCNs:
	B. Physical Architecture
	III. H ARDWARE P LATFORM
	A. Design Specifications

	Fig.€4. Main Card. The card has a number of connectors for digit
	B. Main Card
	C. Network Cards
	IV. S OFTWARE P LATFORM
	A. General Software Architecture

	Fig.€5. SCADA action flow. Different ways to generate graphical
	B. Control and Monitoring (SCADA)

	Fig.€6. Compiler pipeline. Inputs to the compiler can be electri
	C. Programming Environment
	D. Microcontrollers Software
	V. C OMMUNICATIONS
	A. Token-Bus Optical Network

	Fig.€7. Client/server setup for remotely controlling the plant o
	B. Internetworking
	Fig.€8. Interconnection of two plants through the public Interne

	VI. I NDUSTRIAL A PPLICATIONS AND E XAMPLES OF U SE

	Fig.€9. Electrical schematic of a star-triangle motor starter. A
	Fig.€10. Top view of the LCN that implements a star-triangle mot
	VII. C ONCLUSION

	Fig.€11. Experimental delay between input change and output acti
	A. Speck, Reusable industrial control systems, IEEE Trans. Ind.
	G. Frey and L. Litz, Formal methods in PLC programming, in Proc.

	Programmable Logic Controllers, Part 3: Languages, International
	N. Raghunandan, S. Sumithra, R. Anasuya, T. S. Natarajan, and G.
	J. P. Agrawal, E. Bouktache, O. Farook, and C. R. Sekhar, Hardwa
	A. G. Malamos, K. Kalaitzakis, and N. C. Voulgaris, A microcontr
	J. García, J. M. Quero, R. Palomo, F. Manzanares, L. G. Franquel
	J. M. Quero, R. Millán, M. Haidenthales, S. Fenoy, L. G. Franque
	J. García, A. Luque, C. Aracil, F. R. Palomo, D. Carrión, F. Gám
	M. Gudgin, M. Hardley, J.-J. Moreau, and H. F. Nielsen . (2003,
	J. Robie, J. Lapp, and D. Schach . (1998, Sept.) XML Query Langu
	F.-L. Lian, J. R. Moyne, and D. M. Tilbury, Performance evaluati
	T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler . (2000,
	D. Brownell . (2003) SAX, Simple API for XML . [Online] . Availa

	Information Processing Systems Local Area Networks Part 4: Token
	J. Clark . (2003) Expat: XML Parser Toolkit . [Online] . Availab
	F. Arciniegas, C++ XML . Indianapolis, IN: New Riders, 2001.
	A. Alexandrescu, Modern C++ Design: Generic Programming and Desi
	J.-P. Tremblay, The Theory and Practice of Compiler Writing . Ne
	W. Stallings, Data and Computer Communications . Upper Saddle Ri
	W. A. Arbaugh, J. R. Davin, D. J. Farber, and J. M. Smith, Secur

	Recommended Practice for Electric Power Distribution for Industr

